Mars’ gravitational pull could be strong enough to shake up Earth’s oceans and shift sediment as part of a 2.4 million-year climate cycle, researchers claim.
It has long been recognized that wobbles in Earth’s orbit around the sun affect Earth’s climate, and these Milankovitch cycles operate at intervals measured in thousands of years. now, Adriana Dutkiewicz and his colleagues at the University of Sydney say they have discovered a 2.4-million-year “great cycle” that is driven by Mars and has dramatically affected the flow of Earth’s oceans for at least 40 million years. It is believed that it has been given.
Evidence for this cycle comes from approximately 300 deep-sea drill cores, revealing unexpected fluctuations in marine sediment deposition. During periods of stable ocean currents, oceanographers expect sediment to be deposited in stable layers, but when abnormal currents or eddies occur, sediment can be deposited elsewhere.
The researchers say the gaps or hiatus in the sediment record coincide with the period when Mars’ gravity exerts its greatest force on Earth, exerting subtle effects on the stability of Earth’s orbit. This changes solar radiation levels and climate, manifesting as stronger currents and eddies in the ocean.
team members Dietmar MullerResearchers, also from the University of Sydney, acknowledged that the great distance between Earth and Mars makes it unlikely that there is any significant gravitational force at work. “But there is so much feedback that even the slightest change can be amplified,” he says. “Mars’ influence on Earth’s climate is similar to the butterfly effect.”
benjamin mills Researchers from the University of Leeds in the UK say the drill core provides further evidence of the existence of “megacycles” in global environmental change.
“Many of us have seen these multimillion-year cycles in various geological, geochemical, and biological records, such as during the famous Cambrian explosion of animal life,” he said. says. “This paper helps solidify these ideas as an important part of environmental change.”
but matthew england A professor at the University of New South Wales in Sydney welcomed the study and said he believed it would improve our understanding of climate cycles on a geological scale, but said he was not convinced by the paper’s conclusions.
“I’m skeptical about the Mars connection, given that Mars’ gravitational pull on Earth is very weak, only about a millionth of the Sun’s gravitational pull,” he says. “Even Jupiter has a stronger gravitational field than Earth.”
The UK also points out that even if there is an impact from Mars, it will be negligible compared to human-induced climate change. “By comparison, greenhouse gas forcing is like a sledgehammer and has no effect on our current climate, where melting ice sheets are reducing ocean circulation.”
topic: